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Abstract. We study a biologically inspired, inherently non-equilibrium model consisting of
self-propelled particles. In the model, particles move on a plane with a velocity of constant
magnitude; they locally interact with their neighbours by choosing at each timestep a velocity
direction equal to the average direction of their neighbours. Thus, in the limit of vanishing
velocities the model becomes analogous to a Monte Carlo realization of the clakdical
ferromagnet. We show by large-scale numerical simulations that, unlike in the equilibrium
XY model, a long-range ordered phase characterized by non-vanishing nepflemerges in

this system in a phase-space domain bordered by a critical line along which the fluctuations of
the order parameter diverge. The corresponding phase diagram as a function of two parameters,
the amplitude of noiseg and the average density of the particless calculated and is found

to have the formy. (o) ~ 0¥/2. We also find thaty scales as a function of the external bias

(field or ‘wind’) according to a power law ~ 1%°. In the ordered phase the system shows
long-range correlated fluctuations andfInoise.

1. Introduction

Recently there has been an increasing interest in the studies of far-from-equilibrium systems
typical in our natural and social environment. Concepts originated from the physics of
phase transitions in equilibrium systems [1] such as collective behaviour, scale invariance
and renormalization have been shown to be useful in the understanding of various non-
equilibrium systems as well. Simple algorithmic models have been helpful in the extraction
of the basic properties of various far-from-equilibrium phenomena, like diffusion limited
growth [2], self-organized criticality [3] or surface roughening [4]. Motion and related
transport phenomena represent a further characteristic aspect of non-equilibrium processes.
Indeed, the transport in various driven systems, such as traffic models [5], molecular motors
[6] and other self-propelled systems [7—12] have been the subject of recent studies.

Self-propulsion is an essential feature of most living systems. Moreover, the motion of
the organisms is usually controlled not only by some external fields, but also by interactions
with other organisms in their neighbourhood. In [7] a simple model was introduced capturing
these features with a view towards modelling the collective motion of large groups of
organisms [13—16] such as schools of fish, herds of quadrupeds, flocks of birds, or groups
of migrating bacteria [17—-21]. The aim of this paper is to further investigate the various
interesting phenomena exhibited by this novel non-equilibrium model.

The model consists of particles moving on a plane and characterized by their (off-lattice)
locationx; and velocityv; pointing in the directiont; = ©(v;), where the functio® gives
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the angle between its argument vector and a selected direction (e.g. horizontal coordinate
axis). The magnitude of the velocity is fixed tg to account for theself-propellednature

of the particles. A simple local interaction is defined in the model: at each time step a given

particle assumes the average direction of motion of the particles in its local neighbourhood
S(i), with some uncertainty, as described by

%t + At) = (D ())siy + & 1)

where the noisef, is a random variable with a uniform distribution in the interval
[—n/2,n/2] and the local average direction of moti¢f)s, is defined as

(M) sa) = ®< Z vj)~ 2

J
xj eS(i)

The local surrounding of théh particle S(i) will be specified in section 2. The locations
of the particles are updated in each time step as

x;(t + At) = z; (1) + v; (1) At. (3

This model is a transport related, non-equilibrium analogue ofghtemagnetianodels,
with the important difference that it is inherenttlynamic the elementary event is the
motion of a particle at each timestep and a change in the direction of motion. The analogy
is as follows. The Hamiltonian tending to align the spins in the same direction in the case
of equilibrium ferromagnets is replaced by the rule of aligning the direction of motion of
particles. The amplitude of the random perturbations is in analogy with the temperature
[7]. Indeed, ifvy = 0, the model is similar to the Monte Carlo simulations of dilutéd
ferromagnets [22].

The reported long-range order in the above [7] and the closely related models [10, 11]
is surprising, because in the case of equilibrium systems possessing continuous rotational
symmetry the ordered phase is destroyed at finite temperatures [23]. A recent dynamic
renormalization group treatment of the problem by Toner and Tu [9] has also led to the
conclusion of the existence of an ordered phase in two dimensions. Thus, the question
of how the ordered phase emerges due to the non-equilibrium nature of the model is of
considerable theoretical interest as well. In section 2 we study the kinetic phase transition
leading to the symmetry-broken state, which is characterized in section 3. In section 4 we
investigate the effect of an external field applied to the system.

2. Kinetic phase transition

We studied the behaviour of the model defined through equations (1)—(3) by performing
large-scale Monte Carlo simulations as a function of two control parameters: the density
of particles,p, and amplitude of the noisg. We applied random initial conditions and
periodic boundary conditions. The calculations were performed Goramection Machine
5 parallel computer, with typicallv = 10*~1 particles.

The interaction range df(i) was defined in two different ways: (i) as a circle of radius
R, or (ii) by considering a square lattice on the plane built up from lattice cells of leRgth
and assuming that a given particle interacts with all the particles located in the same lattice
cell and in the eight neighbouring cells (see figure 1). The existence of the long-range
order, and the critical exponents, turned out tarddgust against changing these details ((i)
or (ii)) of the interaction. Here we present results obtained by definition (ii), as this latter
choice ofS(i) increases the speed of the simulations by a considerable amount.
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Figure 1. Schematic illustration of the model. The particles move off-lattice on a plane and
interact with other particles located in the local surrounding, which can be either a circle or 9
neighbouring cells in an underlying lattice. We plot these interaction areas for pattigiith

a full and broken line, respectively.

A natural dimensionless parameter(ds= vgAt/R, and the behaviour of the model on
vo, At and R depends only through their combination given in this expressiod fofhus,
we can work withAr = 1 andR = 1. The results presented in the following were obtained
usingvg = 0.1, the role of this velocity is discussed in section 5.

For the statistical characterization of the model, a well suited order parameter is the
magnitude of the average momentum of the system

> vl (4)

J
This measure of the net flow is non-zero in the ordered phase, and vanishes (for an infinite
system) in the disordered phase.

We start the simulations from a disordered system (random positions and orientations),
thus¢ (r = 0) =~ 0. After some relaxation time a steady state emerges indicated, e.g. by the
convergence of the cumulative avera@e!r)f()’ ¢ (1) dr. Here we focus on the statistical
properties of the steady state only, and do not deal with the entire relaxation process. In the
vicinity of the critical regime to reach the stationary behaviour takes more thfaMa6te
Carlo steps for a typical simulation with 3@articles in a 106« 100 system. In such cases
we run the simulations for 10° timesteps, which takes abioé h CPU time on theC M5.

The stationary values a@f that we obtained as a time average are plotted in figuag 2(
versusny for ¢ = 2 and various system sizes. In agreement with [7], for weak noises the
model displays long-range ordered motion (up to the actual systeni}izbat disappears
in a continuous manner by increasing

As L — oo, the numerical results indicate the presence of a kinetic phase transition
described by

1
Y

ne(o. L) — n)ﬂ
nele. L) =1 f (0. L
$(p) ~ ( ne(e. L) orn < ne(e, L)
0 for n > n.(o, L)

where n.(o, L) is the critical noise amplitude that separates the ordered and disordered
phases. For a given set ¢{n), the exponeng andn.(p, L) is determined by selecting the
values providing the best fit to trensatz(5), i.e. yielding the maximal scaling regime. The

©)



1378

A Czirok et al

]_ T T T T T 1 T T T
b:]
8 8-
$ o N =800 08r (&) R
0.8+ o+ N =320 0.6 x b
B, O N=20000 . pd
. % N = 100000 O
<
¢ 0.6 R ¢ 04f Eﬁ
><+=+<>
0.4 e x”
x T 0.2F > o N =800
§DD+ R <l + N = 3200
0.2+ + O N =20000
(a) )5‘&& tO o x N = 100000
o Tty &

00 003 01 03 1
An/ne

at P

UC(L) 3.5¢ - 1

2.5+ , , , . .
0 005 01 015 0.2

1/VL

Figure 2. (a) The average momentum of the system in the steady state versus the noise
amplituden for o = 2 and four different system sizesof(N = 800, L = 20; (+) N = 3200,

L = 40; (O) N = 20000,L = 100 and &) N = 10°, L = 223). ) The order present

at smalln disappears in a continuous manner reminiscent of second-order phase transitions:
& ~ [ (L) — ) /n.(L)]P = (An/n.)P, with g = 0.42, different from the mean-field value

% (full line). (c) The estimated;.(L) values converge to a non-zerg(co) limit as L~/2,
indicating the presence of the ordered phase evew as co. The data represent time averages

of long (> 10° MCS) simulations.

numerical results are consistent with (5), since the scaling regime is increased forNarger
(figure 2p)) and the estimated values gf(o, L) converge to a non-zerg.(o, o) value as

r]C(Qﬂ L) - Uc(Q’ OO) ~ Nfé‘ (6)

where¢ is approximately equal t0.85 (figure 2€)). This calculation yields (fop = 2)
B = 0.42+0.03, which is definitely different from the the mean-field va§,|eand consistent
with the value reported in [7] obtained for smaller systems using definition (i¥ ¢or.

Next we discuss the role of density. In figureaB(¢(n) is plotted for L = 100 and
various values op. One can observe that the long-range ordered phase is present f@r any
but for a fixed value ofj, ¢ vanishes with decreasing Thesep () functions parametrized
by variousp collapse to a ‘universal’ functiog(x) by rescalingy with 7.(0),

o1, 0) = ¢(n/1:(0)) (7

whereg(x) ~ (1 —x)? for x < 1, andp(x) ~ 0 for x > 1, andn.(o) is determined as the
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Figure 3. (a) The average momentum of the system in the steady state verfsus. = 100
and three different densities{f o = 4, (0) ¢ =2 and &) o = 0.5). (b) The ¢ () functions
parametrized by various can be collapsed onto a single cuk;/n.(0)] = ¢ (1, 0). (c) The
critical line in then — o phase space is a power-law in the examined regimé) ~ o with
« ~ 0.45 (full line) for a system of sizé. = 100.

value which minimizes

A 2
Az) = [/O dx (¢(xz, 0) —@(X))} . 8

Here theA < 1 cut-off is chosen to exclude the noisy and rounded (due to finite-size effects)
region around.. In our calculations we used the valde= 0.9, and we determined (x)
in a self-consistent manner by averaging over the already resgalgth. (o)) functions.
We show the result of the data collapse in figurb)3(

This procedure (together with the finite-size analysis for a giggralso yields the
position of the ‘critical line'n.(o) in then — ¢ parameter space. According to our numerical
results,

n.(0) ~ 0" 9

holds withx = 0.45+0.05 (see figure &)). Apart from the numerical uncertainties = %
in agreement with recent theoretical results [24].

The critical line (9) is qualitatively different from that of the diluted ferromagnets, since
here the critical density af — 0 (corresponding to the percolation threshold for diluted
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Figure 4. (a) The rms deviation of the order parametein the steady state, fat = 100, and
two independent data set$,(+), each averaged over runs wigh= 0.3,0.6,0.9,1.2, 1.5 and
2. (b) The divergence is symmetric and its tail decaysés) ~ |1 — x| =2 (full line), wherex
denotes the rescaled noise amplitugle. (o).

ferromagnets, see, for example, [22]) is vanishing,
lim o.(n) = 0. (10)
n—0

To see this, let us imagine a system of sizeonsisting of two particles only. Due to the
finite size ofS(i), for almost all initial conditions the trajectories of these particles will get
close enough to each other to establish interaction. As the noise is negligible in (1), the
cluster formed by the particles will not break apart, resultingir: 1 for any finitep as
n— 0.

The behaviour of the model in the — oo limit is still not clear. By definition
n < 27 holds, so (9) obviously cannot describe the system in this limit. Thug) either
approachess2 or a non-trivialn.(co) < 2 value.

Finally, we note that equation (7) also implies that the expongntdefined as
¢ ~ (0 — o0.)? for o > o, (see [7]), must be equal 16, since

= 1 ~ 10m,
, Oc =¢(—— | m=p(1-= ~ € 11
e+ =9 (nc[Qc(n) + 6]) ¢ ( n do 6) ‘ ()

wheren.(¢) denotes the inverse function pf(n) asn = n.[e.(n)]. Indeed, the results of
the simulations performed with = constant and varioug and p yield 8’ = 0.4 &+ 0.05,
which is consistent withg = 8’. In this case the larger uncertainty is due to the increased
noise at low densities.

3. Fluctuations

As a further analogy with equilibrium phase transitions, we note that the fluctuations of the
order parameter also increase on approaching the critical line. To study this, we calculate
for various control parameters the standard deviation of the total momentum, defined as
o? = (¢?) — (¢)?, where the averages are taken over the stationary data set obtained from
the simulations. In figure 4 we ploto versus the rescaled noise amplitudes 1/n.(0)

for various densities and = 100. The tails of the curves are symmetric, and decay as
power-laws with an exponent close to 2 (see figure Hd))

o(x)~|1—x|7". (12)
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Figure 5. The expected value of the standard deviation of the order parameter in a time interval
of length At on double logarithmicg) and log-linearlf) plots. ForAt < t ~ L/vg the system
shows long-range correlations characterizedugyAr) ~ Ar* wherea ~ 0.6. For comparison,

the dotted line shows the uncorrelated case< %). For Ar > t the correlations are even
stronger:wg (Ar) ~ log(Ar). The data displayed is an average over two independent runs, each
was performed aj = 2.73, o = 2 andN = 1C°. The duration of the simulation was 70000
Monte Carlo steps.

In section 4 we compare this result with direct susceptibility measurements, when an external
field is also applied.

We studied the time correlations of the fluctuations by calculating the expected value
of the rms deviation in a time intervals

wi (A = ((¢%)ar — (#)3,) (13)

where the internal and external brackets denote averages calculated over a time interval
(t, t + Ar) and the entire stationary data set, respectively. A close relation bewwgexr)
and the power-spectrurfy, (w) of the order parametep(r) can be derived from the self-
affine properties of the signal [254(Af) ~ (Af)* is equivalent taS,(w) ~ »*, and for
the exponentg. = 1+ 2« holds (for 3> A > 1).

The numerically obtained results (figurea®( show that at the critical line the
fluctuations of the order parameter are characterized by the correlation exponent
0.6 + 0.05 up to a characteristic correlation time This behaviour means that in the
steady state the ‘condensation’ and ‘evaporation’ processes (when particles join or leave
the dominant cluster, respectively) are correlateBor ¢ > t the the system shows even
stronger correlations, as in this regimg(Ar) ~ log Az (see figure 5§)). This behaviour
is probably related to the periodic boundary conditionsy & comparable with /vg, the
time needed for a particle to cross the entire system.

4. External fields

The presence of the long-range correlated phase in two dimensions (i.e. the breakdown of the
Mermin—Wagner theorem [23]) is a striking consequence of the non-equilibrium nature of
the XY model. As the fluctuation-response theorkefiy = No? must hold for Hamiltonian

1 In the uncorrelated case the momentum of the dominant cluster would be the integral of an uncorrelated noise
yielding @ = 0.5.
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Figure 6. ¢ versus the amplitude of the applied external figldfor o = 2, L = 100 and
n=0.30.915,21,27,3.3,3.5 and 45 (from top to bottom).

systems only, it is interesting to check its applicability when the equation of motion cannot
be derived from a Hamiltonian.
A natural way to introduce an external field in the model is by changing rule (2) for

() s = @( Z v; +he) (14)

zj eS(i)

where e is an arbitrary unit vector and the parametercontrols the strength of the
perturbation.

In the numerical studies we set the density of the particles to 2, and studyp as
a function ofn and k. Typical results for systems aof = 100 are plotted in figure 6.
The curves parametrized by varioysintersect theh = 0 axis at the same values found
in section 2, so for: = 0 the original model is recovered. In generaljs increased for
increasingk, and the results can be summarized by means of critical expofenis y,
and susceptibilityy (n) defined in a manner similar to the case of classical magnets:

K (1) = ,',“l‘oqs(n’ h) ;Ji(??, h =0) (15)
¢ ~ ht? for n > n,. (16)
and
(n_nc) : for n > n,
xmy~3 5 T (17)
(ﬁc—ﬁ> ) forn <n..
nC

We distinguish the critical exponentg. and y, from the exponenty defined by the
singularity ofo (), since in this case # y. # y, (as will be demonstrated later).

To determines, we plot the obtained (n) curves on a double logarithmic plot (see
figure 7@)). We see that for large values ¢fthe system saturate® & ¢se~ 0.1), while
for low values ofg the finite-size noise dominateg & ¢noise = 0.03, for L = 100). Thus,
we expect that the relation

¢, h) = x(h*? (18)
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Figure 7. (a) The ¢ (k) functions foro = 2, L = 100 andn = 3.9,4.2,4.5,4.8,5.2 (from

top to bottom) on a double-logarithmic ploip ~ 1/% holds for a limited range of only,

as for¢ > 0.1 the system saturates, and fpr< 0.02 the finite-size noise dominatesb) (

For 002 < ¢ < 0.1 the curves for varioug can be collapsed onto a single power-law with
an exponent A8 ~ 0.9. (c) For larger systems the finite-size noise is reduced and the scaling
regime is enlarged, in agreement with the~ 1Y/ ansatz((0) o = 2,.L = 100, = 4.2; (+)
0=2,L=223,n=42).

holds forg, € [¢noise Psad ONly. As the boundaries of this interval do not depend;amtil

n > n., equation (18) can be verified by collapsing the rescalgd, /#)/x (n) data points
onto a single power-law (figure B)). Similarly to the determination of.(0), x (n) ands

can be calculated in a self-consistent manner. This procedure gields1 ~ 1 andy (1)
decaying withy, ~ 4. Note, thaty, cannot be obtained by this method as in the ordered
phasep > ¢sat

To check the stability of these results, we also performed measurements on larger
systems, wher@nise is reduced. Indeed, the scaling regime for (18) increases and the
exponent is consistent with our former estimate (see figury.7(

We can also calculate (n) applying its definition (17) by sampling a series of
x(mi = (¢, hy) — ¢(n, )]/ (h; — h}) for varioush;, h; < 1, and (ass ~ 1) assuming
x(m) = {(x;(n));. The result is shown in figure 8. The> 5, tail is consistent with our
former estimate from applying (18), while far< 5. x(n) decays withy, ~ 1.
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Figure 9. Snapshots of the time development of a system Witk 4000,L = 40 andvg = 0.01

at 50 @), 100 (), 400 €) and 3000 @) Monte Carlo steps. First the behaviour is reminiscent

of the equilibriumXY model, where the long range order is missing since vortices are present
in the system. However, the vortices are unstable, and finally a self-organized long-range order
develops.

5. Conclusion

We have demonstrated that this far-from-equilibrium system of self-propelled particles can
be described using the framework of classical critical phenomena, but shows surprising new
features when compared with the analogous equilibrium systems. The velgpgitgvides
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a control parameter which switches between an equilibrixiiirtype model (o = 0),
and another universality class of dynamic, non-equilibrium models characterized by a non-
vanishing value ofy.

Indeed, forvg = 0 we can observe Kosterlitz—Thouless vortices in the system, which
turned out to be unstable for any non-zegowve investigated: in figure 9 we plot snapshots
of the system. These pictures demonstrate how the vortices disappear and give way to long-
range order. We performed control simulations with variegig the range [1, 0.3], and
the results presented seem to be robust against changing the valyéndhis range.
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